Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Int J Hyg Environ Health ; 259: 114378, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631089

RESUMO

Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.

2.
Arch Toxicol ; 98(5): 1383-1398, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485782

RESUMO

Homosalate (HMS) is a UV filter used in sunscreens and personal care products as a mixture of cis- and trans-isomers. Systemic absorption after sunscreen use has been demonstrated in humans, and concerns have been raised about possible endocrine activity of HMS, making a general population exposure assessment desirable. In a previous study, it was shown that the oral bioavailability of cis-HMS (cHMS) is lower than that of trans-HMS (tHMS) by a factor of 10, calling for a separate evaluation of both isomers in exposure and risk assessment. The aim of the current study is the investigation of HMS toxicokinetics after dermal exposure. Four volunteers applied a commercial sunscreen containing 10% HMS to their whole body under regular-use conditions (18-40 mg HMS (kg bw)-1). Parent HMS isomers and hydroxylated and carboxylic acid metabolites were quantified using authentic standards and isotope dilution analysis. Further metabolites were investigated semi-quantitatively. Elimination was delayed and slower compared to the oral route, and terminal elimination half-times were around 24 h. After dermal exposure, the bioavailability of cHMS was a factor of 2 lower than that of tHMS. However, metabolite ratios in relation to the respective parent isomer were very similar to the oral route, supporting the applicability of the oral-route urinary excretion fractions for dermal-route exposure assessments. Exemplary calculations of intake doses showed margins of safety between 11 and 92 (depending on the approach) after single whole-body sunscreen application. Human biomonitoring can reliably quantify oral and dermal HMS exposures and support the monitoring of exposure reduction measures.


Assuntos
Monitoramento Biológico , Salicilatos , Protetores Solares , Humanos , Administração Cutânea , Toxicocinética
3.
Chem Res Toxicol ; 37(2): 285-291, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38227338

RESUMO

Homosalate (HMS) is an organic UV filter used in sunscreens and personal care products. Despite its widespread use and detection in environmental matrices, little is known regarding its exposure in humans. HMS is used as a mixture of cis- and trans-isomers, and we recently revealed major differences in human toxicokinetics, indicating the need to consider these isomers separately in exposure and risk assessments. In the course of these previous investigations of human HMS toxicokinetics, we identified two trans-HMS-specific and one cis-HMS-specific biomarker candidates. However, the latter lacks sensitivity due to only low amounts excreted in urine, prompting the search for another cis-HMS-specific biomarker. Our toxicokinetic investigations revealed a total of five isomers of HMS carboxylic acid metabolites (HMS-CA). Of these, only one was specifically formed from cis-HMS (HMS-CA 5), but its full identity in terms of constitution and configuration had, so far, not been elucidated. Here, we describe the synthesis of three HMS-CA isomers, of which the isomer (1R,3S,5S)/(1S,3R,5R)-3-((2-hydroxybenzoyl)oxy)-1,5-dimethylcyclohexane-1-carboxylic acid turned out to be HMS-CA 5. Taken together with two previously synthesized HMS-CA isomers, we were able to identify the constitution and configuration of all five HMS-CA isomers observed in human metabolism. We integrated the newly identified cis-HMS-specific metabolite HMS-CA 5 into our previously published human biomonitoring LC-MS/MS method. Intra- and interday precisions had coefficients of variation below 2% and 5%, respectively, and the mean relative recovery was 96%. The limit of quantification in urine was 0.02 µg L-1, enabling the quantification of HMS-CA 5 in urine samples for at least 96 h after sunscreen application. The extended method thus enables the sensitive and separate monitoring of cis- and trans-HMS in future human biomonitoring studies for exposure and risk assessment.


Assuntos
Salicilatos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Salicilatos/metabolismo , Protetores Solares/metabolismo , Técnicas de Química Sintética
4.
Front Public Health ; 11: 1277812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152667

RESUMO

Introduction: Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic to humans and are formed by incomplete combustion. PAHs are always present during firefighting operations, and fire department members can be exposed to them in the workplace. Methods: In this study, we analyzed 1-hydroxypyrene (1-OHP) in 36 urine samples from nine firefighters, collected before and after fire training sessions, and 32 urine samples from eight employees at respiratory protection and hose workshops. To assess breakthrough PAH exposure through personal protective equipment and potential dermal uptake, some of the workshop employees wore cotton garments under their regular workwear. Cotton samples were then examined for the presence of 17 semi-volatile and low-volatility PAHs. Results: After firefighting exercises, we observed approximately a fivefold increase in mean 1-OHP concentrations in samples from firefighters, from 0.24 µg/L to 1.17 µg/L (maximum: 5.31 µg/L). In contrast, 1-OHP levels in workshop employees were found to be low, with the majority of urine samples yielding concentrations below the limit of quantification (LOQ: 0.05 µg/L, maximum: 0.11 µg/L). Similarly, low PAH levels were found on the workshop employees' cotton undergarments, with maximum concentrations of 250 and 205 ng/g for pyrene and benzo[a]pyrene, respectively. Discussion: In conclusion, significant increases in 1-OHP in urine were observed in firefighters after training sessions, whereas work-related exposure remained low among workshop employees.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Monitoramento Biológico , Monitoramento Ambiental
5.
Environ Int ; 182: 108334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029623

RESUMO

The UV filters octocrylene (OC) and 2-ethylhexyl salicylate (EHS) are commonly used in sunscreens and frequently detected in environmental media. However, knowledge on human exposures is scarce. In this human biomonitoring (HBM) study, we analyzed concentrations of exposure biomarkers specific to OC (CPAA, DOCCA, 5OH-OC) and EHS (5OH-EHS, 5oxo-EHS, 5cx-EPS) in 24-h urine samples (n = 420) from the German Environmental Specimen Bank (ESB). These samples were collected from German students (20-29 years; 30 males/30 females per year) between 1996 and 2020 (4-year intervals; collection in winter). We found continuously increasing OC and EHS exposures (Jonckheere-Terpstra; p < 0.001) documented by very few to no samples with concentrations of the most sensitive biomarkers CPAA and 5cx-EPS above the limit of quantification (LOQ) in 1996 (5 % and 0 %, respectively) and reaching 100 % and 93 % above the LOQ in 2016, with median concentrations of 4.79 and 0.071 µg/L, respectively. In 2020, biomarker concentrations slightly decreased to 3.12 µg/L CPAA (97 %>LOQ) and 0.060 µg/L 5cx-EPS (88 %>LOQ). This general trend was confirmed by the other biomarkers, however at lower detection rates. Based on metabolite excretion in the 24-h urine samples and human toxicokinetic data, we calculated maximum daily intakes (DI) of 17 µg/(kg bw * d) OC and 59 µg/(kg bw * d) EHS. Based on a derived no-effect level (DNEL) of 0.8 mg/(kg bw * d), the OC exposures of individuals in our study did not indicate any health risk. Similarly, for EHS all biomarker concentrations were well below the HBM-I values of 12 µg/L 5OH-EHS and 11 µg/L 5cx-EPS. Our data proves the general applicability of specific OC and EHS metabolites for HBM in the general population and shows clearly increasing exposures. Higher (co-)exposures must be expected in populations with increased sunscreen use such as (summer) vacationers, children and outdoor workers.


Assuntos
Monitoramento Biológico , Poluentes Ambientais , Masculino , Criança , Feminino , Humanos , Alemanha , Protetores Solares/análise , Biomarcadores/urina , Monitoramento Ambiental , Exposição Ambiental/análise , Poluentes Ambientais/urina
6.
Chem Res Toxicol ; 36(11): 1745-1752, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37921539

RESUMO

Geraniol is a fragrance with a characteristic rose-like smell, naturally occurring in terpene oil and also chemically synthesized on a large scale. Geraniol is widely used in consumer products such as cosmetics, personal care products, and household cleaners and as an additive in foods. An experimental study in human volunteers was carried out to investigate the metabolism and elimination kinetics of geraniol. Three subjects were orally exposed to geraniol in two different dosages (25 or 250 mg). In each case, one pre-exposure urine sample and all urine voids for 72 h after exposure were collected separately. The geraniol metabolites Hildebrandt acid, geranic acid, 3-hydroxycitronellic acid, and 8-carboxygeraniol were analyzed in every sample after enzymatic hydrolysis and liquid-liquid extraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Maximum urinary concentrations of the metabolites were measured between 1 and 5 h after oral dosing, and elimination half-lives were determined to be about 2-4 h. The predominant metabolite found in urine was Hildebrandt acid with 34.4 ± 5.6% of the ingested dose, followed by geranic acid (12.7 ± 5.6%), 3-hydroxycitronellic acid (2.2 ± 0.4%), and 8-carboxygeraniol (0.19 ± 0.09%). In total, the four metabolites determined represent 41.7-55.5% of the ingested dose. Only 8-carboxygeraniol is, however, a specific metabolite, while the other three target analytes are also formed from other terpenes like citral. Within this study, conversion factors were calculated, which allow for a rough estimate of the total geraniol uptake by back-calculation from metabolite concentrations of spot urine samples. Taking the conversion factor for all four metabolites into account, a mean daily uptake of geraniol of 1.43 mg was estimated from 41 urine samples of occupationally nonexposed adults. The metabolites Hildebrandt acid, geranic acid, 3-hydroxycitronellic acid, and 8-carboxygeraniol in urine are suitable biomarkers of exposure for geraniol and can be used for human biomonitoring studies.


Assuntos
Odorantes , Espectrometria de Massas em Tandem , Adulto , Humanos , Cromatografia Líquida
7.
Environ Sci Technol ; 57(48): 19285-19294, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37939249

RESUMO

Reverse dosimetry, i.e., calculating the dose of hazardous substances that has been taken up by humans based on measured analyte concentrations in spot urine samples, is critical for risk assessment and requires metabolic and kinetic data. We quantitatively studied the metabolism of seven major neonicotinoid and neonicotinoid-like compounds (NNIs) after single oral doses in male volunteers and determined key kinetic parameters and urinary elimination for NNIs together with their metabolites. Complete and consecutive urine samples were collected over 48 h. All samples were analyzed by tandem mass spectrometry, following liquid or gas chromatographic separation. Single- and group-specific NNI metabolites were quantified, i.e., hydroxylated and N-dealkylated NNIs and NNI-associated carboxylic acids and their glycine derivatives. Large, substance-dependent variations of key toxicokinetic parameters were observed. Mean times of concentration maxima (tmax) in urine varied between 2.0 (imidacloprid) and 25.8 h (N-desmethyl-clothianidin), whereas mean urinary elimination half-times (t1/2) were between 2.5 (acetamiprid) and 49.5 h (sulfoxaflor). Mean 48 h excretion fractions (Fue's) were between 0.03% (2-chloro-1,3-thiazole-5-carboxylic acid glycine) and 84% (clothianidin). In contrast, the interindividual differences of Fue's between the volunteers for each of the NNIs and their metabolites remained low (below a factor of 2 between the maximum and minimum derived Fue with the exception of 6-chloronicotinic acid in the acetamiprid dose study). The obtained quantitative data enabled choosing appropriate biomarkers for exposure assessment and, at the same time, for risk assessment by reverse dosimetry at current environmental exposures, i.e., comparing the calculated doses that have been taken up to currently available acceptable daily intakes of NNIs.


Assuntos
Inseticidas , Humanos , Masculino , Neonicotinoides , Tiazóis , Nitrocompostos , Glicina
8.
JMIR Res Protoc ; 12: e51020, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831504

RESUMO

BACKGROUND: Semivolatile organic compounds (SVOCs) comprise several different chemical families used mainly as additives in many everyday products. SVOCs can be released into the air as aerosols and deposit on particulate matter during use by dispersion, evaporation, or abrasion. Phthalates are SVOCs of growing concern due to their endocrine-disrupting effects. Human data on the absorption, distribution, metabolism, and excretion (ADME) of these compounds upon inhalation are almost nonexistent. OBJECTIVE: The goal of this study is to develop a method for repeated inhalation exposures to SVOCs to characterize their ADME in humans. METHODS: We will use diethylhexyl phthalate (DEHP), a major indoor air pollutant, as a model SVOC in this novel protocol. The Swiss official Commission on Ethics in Human Research, Canton de Vaud, approved the study on October 14, 2020 (project-ID 2020-01095). Participants (n=10) will be repeatedly exposed (2 short daily exposures over 4 days) to isotope-labeled DEHP (DEHP-d4) to distinguish administered exposures from background exposures. DEHP-d4 aerosols will be generated with a small, portable, aerosol-generating device. Participants will inhale DEHP-d4-containing aerosols themselves with this device at home. Air concentrations of the airborne phthalates will be less than or equal to their occupational exposure limit (OEL). DEHP-d4 and its metabolites will be quantified in urine and blood before, during, and after exposure. RESULTS: Our developed device can generate DEHP-d4 aerosols with diameters of 2.5 µm or smaller and a mean DEHP-d4 mass of 1.4 (SD 0.2) µg per puff (n=6). As of May 2023, we have enrolled 5 participants. CONCLUSIONS: The portable device can be used to generate phthalate aerosols for repeated exposure in human studies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51020.

9.
Environ Sci Technol ; 57(32): 11926-11936, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506071

RESUMO

Phthalates owing to their endocrine-disrupting effects are regulated in certain products, leading to their replacement with substitutions such as di-2-ethylhexyl terephthalate (DEHTP), 1,2-cyclohexane dicarboxylic acid di(isononyl) ester (DINCH), and di(2-ethylhexyl) adipate (DEHA). However, information on human exposure to these substitutes, especially in susceptible subpopulations such as children, is limited. Thus, we examined the levels and exposure trends of DEHTP, DINCH, and DEHA metabolites in 7 year-old Japanese school children. In total, 180 urine samples collected from 2012 to 2017 were used to quantify 10 DEHTP, DINCH, and DEHA metabolites via isotope dilution liquid chromatography with tandem mass spectrometry. DEHTP and DINCH metabolites were detected in 95.6 and 92.2% of the children, respectively, and DEHA was not detected. This study, annually conducted between 2012 and 2017, revealed a significant (p < 0.05) 5-fold increase in DEHTP metabolites and a 2-fold increase in DINCH metabolites. However, the maximum estimated internal exposures were still below the health-based guidance and toxicological reference values. Exposure levels to DEHTP and DINCH have increased considerably in Japanese school children. DEHA is less relevant. Future studies are warranted to closely monitor the increasing trend in different aged and larger populations and identify the potential health effects and sources contributing to increasing exposure and intervene if necessary.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Criança , Idoso , Plastificantes , Exposição Ambiental/análise , Ácidos Ftálicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Poluentes Ambientais/análise
11.
Int J Hyg Environ Health ; 250: 114169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37099846

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) were included as priority substances for human biomonitoring (HBM) in the European Human Biomonitoring Initiative (HBM4EU), which intended to harmonise and advance HBM across Europe. For this project, a specific Quality Assurance and Quality Control (QA/QC) programme applying Inter-laboratory Comparison Investigations (ICIs) and External Quality Assurance Schemes (EQUASs) was developed to ensure the comparability and accuracy of participating analytical laboratories. This paper presents the results of four ICI/EQUAS rounds for the determination of 13 PAH metabolites in urine, i.e. 1-naphthol, 2-naphthol, 1,2-dihydroxynaphthalene, 2-, 3- and 9-hydroxyfluorene, 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene, 1-hydroxypyrene and 3-hydroxybenzo(a)pyrene. However, 4 PAH metabolites could not be evaluated as the analytical capacity of participating laboratories was too low. Across all rounds and biomarkers, 86% of the participants achieved satisfactory results, although low limits of quantification were required to quantify the urinary metabolites at exposure levels of the general population. Using high-performance liquid or gas chromatography coupled with mass spectrometry (HPLC-MS; GC-MS) and isotope dilution for calibration as well as performing an enzymatic deconjugation step proved to be favourable for the accurate determination of PAHs in urine. Finally, the HBM4EU QA/QC programme identified an international network of laboratories providing comparable results in the analysis of urinary PAH biomarkers, although covering all parameters initially selected was still too challenging.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/urina , Monitoramento Biológico , Cromatografia Líquida de Alta Pressão/métodos , Europa (Continente) , Biomarcadores/urina , Monitoramento Ambiental/métodos
13.
Toxics ; 11(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36977006

RESUMO

Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe-as comparably as possible-the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies.

14.
Environ Res ; 226: 115609, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870553

RESUMO

Neonicotinoids and neonicotinoid-like compounds (NNIs) are widely used insecticides and their ubiquitous occurrence in the environment requires methods for exposure assessment in humans. The majority of the NNIs can be divided into 6-chloropyridinyl- and 2-chlorothiazolyl-containing compounds, suggesting the formation of the group-specific metabolites 6-chloronicotinic acid (6-CNA), 2-chloro-1,3-thiazole-5-carboxylic acid (2-CTA), and their respective glycine derivatives (6-CNA-gly, 2-CTA-gly). Here, we developed and validated an analytical method based on gas chromatography coupled to mass spectrometry (GC-MS/MS) to simultaneously analyze these four metabolites in human urine. As analytical standards for the glycine conjugates were not commercially available, we synthesized 6-CNA-gly, 2-CTA-gly, and their 13C2,15N-labeled analogs for internal standardization and quantitation by stable isotope dilution. We also ensured chromatographic separation of 6-CNA and its isomer 2-CNA. Enzymatic cleavage during sample preparation was proven unnecessary. The limits of quantitation were between 0.1 (6-CNA) and 0.4 µg/L (2-CTA-gly) and the repeatability was satisfactory (coefficient of variation was <19% over the calibration range). We analyzed 38 spot urine samples from the general population and were able to quantify 6-CNA-gly in 58% of the samples (median 0.2 µg/L). In contrast, no 6-CNA could be detected. The results are in line with well-known metabolic pathways specific in humans, that, compared to rodents, favor the formation and excretion of phase-II-metabolites (glycine derivatives) rather than phase-I metabolites (free carboxylic acids). Nevertheless, the exact source of exposure (i.e., the specific NNI) remains elusive in the general population, may even vary quantitatively between different NNIs, and also might be regional specific based on the respective use of individual NNIs. In sum, we developed a robust and sensitive analytical method for the determination of four group-specific NNI metabolites.


Assuntos
Inseticidas , Espectrometria de Massas em Tandem , Humanos , Neonicotinoides , Espectrometria de Massas em Tandem/métodos , Ácidos Carboxílicos , Glicina , Inseticidas/urina
15.
Int J Hyg Environ Health ; 249: 114101, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805185

RESUMO

Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes ∼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 µg/L), MiBP (26.6 µg/L), and MEP (24.4 µg/L) and lowest for∑DiDP metabolites (1.91 µg/L) and ∑DINCH metabolites (3.57 µg/L). In adolescents highest GMs were found for MEP (43.3 µg/L), ∑DEHP metabolites (28.8 µg/L), and MiBP (25.6 µg/L) and lowest for ∑DiDP metabolites (= 2.02 µg/L) and ∑DINCH metabolites (2.51 µg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Criança , Adolescente , Exposição Ambiental/análise , Poluentes Ambientais/análise , Ácidos Ftálicos/metabolismo
16.
Int J Hyg Environ Health ; 248: 114080, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657282

RESUMO

Over the last twenty-five years it has become evident that exposure to several phthalates can have adverse effects on human health, such as endocrine disruption. This led to a series of EU regulations that resulted in a decrease in the production volumes of the restricted phthalates and an increased production of substitutes. The current study describes the impact of regulations and changes in production and use of phthalates and their substitutes on internal exposure patterns in two European populations since the beginning of the 2000'ies. Using harmonised data from young adults in Denmark (Danish Young Men Study, n = 1,063, spot urine) and Germany (Environmental Specimen Bank, n = 878, 24-h urine) with repeated cross-sectional design (3-11 cycles per biomarker) we applied Locally Estimated Scatterplot Smoothing (LOESS) and Generalized Linear Models (GLMs) to estimate time trends and the role of covariates on the trend (e.g. age, BMI). Time trends of daily excretion (µg/24h) are comparable between the two samples for the regulated (DEHP, BBzP, DiNP, DnBP, DiBP, DiDP/DPHP) as well as the non-regulated substances (DMP, DEP, DINCH, DEHTP) although the rate of change differ for some of the compounds. GLM results indicate that the daily excretion of the most regulated phthalates has decreased over time (DEHP yearly about 12-16%, BBzP 5%, DnBP 0.3-17%, and DiBP 4-12%). Interestingly, also the non-regulated phthalates DMP and DEP decreased by 6-18% per year. In sharp contrast, the phthalate substitutes DINCH and DEHTP show very steep annual increases (∼10-68% and ∼100%, respectively) between 2009 and 2017. We did not find an effect of age, sex, BMI, or education on the time trend. The present study provides comparable insights into how exposure to phthalates and two of their substitutes have changed over the last two decades in Germany and Denmark.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Masculino , Humanos , Adulto Jovem , Monitoramento Ambiental , Poluentes Ambientais/urina , Estudos Transversais , Ácidos Ftálicos/urina , Dinamarca , Exposição Ambiental/análise
17.
Anal Chim Acta ; 1239: 340680, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628758

RESUMO

Neonicotinoids and neonicotinoid-like compounds (NNIs) are frequently used insecticides worldwide and exposure scenarios can vary widely between countries and continents. We have developed a specific and robust analytical method based on liquid chromatography-electrospray tandem mass spectrometry coupled to online-SPE (online-SPE-LC-ESI-MS-MS) to analyze the seven most important NNIs from a global perspective together with nine of their key metabolites in human urine. The method also includes the neonicotinoid-like flupyradifurone (FLUP), an important future substitute for classical neonicotinoids, and two of its major human metabolites, 5-hydroxy- and N-desfluoroethyl-FLUP. Validation of the method was carried out using pooled urine samples from low-dose human metabolism studies and spiked urine samples with a wide range of creatinine concentrations. Depending on the analyte, the limits of quantitation were between 0.06 and 2.1 µg L-1, the inter-day and intra-day imprecisions ≤6%, and the mean relative recoveries between 89% and 112%. The method enabled us to successfully quantify NNIs and their metabolites at current environmental exposures in 34 individuals of the German general population and 43 pregnant women from Brazil with no known occupational exposures to NNIs.


Assuntos
Inseticidas , Espectrometria de Massas em Tandem , Humanos , Feminino , Gravidez , Neonicotinoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Inseticidas/análise , Cromatografia Líquida
19.
Int J Hyg Environ Health ; 247: 114073, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36434900

RESUMO

Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.


Assuntos
Ácidos Ftálicos , Masculino , Criança , Feminino , Adolescente , Humanos , Políticas , Monitoramento Biológico , Ácidos Carboxílicos
20.
Front Public Health ; 11: 1321138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322362

RESUMO

Acetamiprid (ACE) and imidacloprid (IMI) are insecticides of global importance and are used as spray and watering agents for ornamental plants to control biting and sucking insects or as topical medications on pets to remove and control fleas. Human biomonitoring data on ACE and IMI exposures when applying these products are limited. We investigated exposures to ACE and IMI in male volunteers after the domestic application of either an ACE-containing agent or an IMI-containing spot-on medication. Complete and consecutive urine samples were collected for up to 56 h after application. Urine samples were analyzed for ACE, IMI, and their respective metabolites (N-desmethyl-ACE, IMI-olefin, and sum of 4-/5-hydroxy-IMI) by liquid chromatography-tandem mass spectrometry. Fairly uniform concentrations of N-desmethyl-ACE could be observed before and after orchid treatment, so that an ACE exposure associated with orchid treatment can most likely be excluded. In contrast, after the application of the IMI-containing medication, elevated concentrations of IMI, 4-/5-hydroxy-IMI, and IMI-olefin were quantified in urine samples post-20 h with maximum concentrations of 3.1, 14.9, and 8.0 µg/g creatinine, respectively, well above general background levels. Nevertheless, the IMI intake (10.6 µg/kg bw), calculated from the excreted amounts, was around five times below the current European acceptable daily intake. Based on the case results here, household exposures to ACE and IMI after spray treatment of ornamental plants and anti-flea treatment of dogs can be regarded as low and safe. However, people regularly applying neonicotinoid-containing formulations, such as professional gardeners and employees in animal shelters, should be studied in more detail.


Assuntos
Monitoramento Biológico , Inseticidas , Nitrocompostos , Humanos , Animais , Cães , Neonicotinoides/urina , Inseticidas/urina , Alcenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...